New Research from Merck’s Broad Oncology Clinical Development Program to be Presented at 2019 ASCO Annual Meeting

Release Date:
Wednesday, May 15, 2019 5:00 pm EDT

Terms:
Oncology Research and Development News Corporate News Latest News #Merck #MRK $MRK Merck MRK

Dateline City:
KENILWORTH, N.J.

Key abstracts to be presented at ASCO include:

- First presentation of data from the Phase 3 POLO trial evaluating the PARP inhibitor LYNPARZA as first-line maintenance treatment in patients with germline *BRCA*-mutated (g*BRCA*mut) metastatic pancreatic cancer who did not progress on platinum-based chemotherapy (Abstract #LBA4). These results will be presented in the ASCO Plenary Session and highlighted in the ASCO press program. As previously announced in February 2019, the POLO trial met its primary endpoint of progression-free survival (PFS) compared to placebo.

- Five-year long-term OS data from the Phase 1b KEYNOTE-001 study evaluating KEYTRUDA in patients with advanced NSCLC (Abstract #LBA9015). These results will be highlighted in the ASCO press program.

- Updated data, including OS and progression-free survival 2 (PFS2) findings, from the Phase 3 KEYNOTE-189 trial evaluating KEYTRUDA in combination with pemetrexed (ALIMTA®) and platinum chemotherapy in patients with
metastatic nonsquamous NSCLC (Abstract #9013). The KEYNOTE-189 study was conducted in collaboration with Eli Lilly and Company, the makers of pemetrexed (ALIMTA®).

- First presentation of data from the Phase 3 KEYNOTE-062 trial evaluating KEYTRUDA as first-line treatment (as monotherapy and in combination with chemotherapy) in patients with advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma (Abstract #LBA4007). In April 2019, Merck announced KEYTRUDA met a primary endpoint as monotherapy, but not in combination with chemotherapy.

- Data, including OS, PFS and objective response rate (ORR), from new subgroup analyses of the combined International Metastatic RCC Database Consortium (IMDC) intermediate/poor risk and sarcomatoid subgroups in the Phase 3 KEYNOTE-426 trial evaluating KEYTRUDA in combination with axitinib compared to sunitinib as first-line therapy in patients with metastatic RCC (Abstract #4500).

- Results from the final analysis, including new OS data, from the Phase 3 KEYNOTE-048 trial evaluating KEYTRUDA as first-line therapy (as monotherapy and in combination with chemotherapy) in patients with recurrent or metastatic head and neck squamous cell carcinoma (Abstract #6000).

- First presentation of data from the Phase 3 SOLO3 trial evaluating LYNPARZA in patients with relapsed BRCA-m advanced ovarian cancer (Abstract #5506). As previously announced in December 2018, the SOLO3 trial met its primary endpoint of ORR with LYNPARZA compared to chemotherapy.

- First presentation of data from KEYNOTE-240 evaluating KEYTRUDA in previously treated patients with advanced hepatocellular carcinoma (HCC) (Abstract #4004). As previously announced in February 2019, KEYNOTE-240 did not meet its co-primary endpoints of OS and PFS compared with placebo plus best supportive care; there was an improvement in OS and results were directionally favorable for PFS in patients treated with KEYTRUDA compared with placebo, however these results did not meet statistical significance.

Details on Studies Listed Above, and Key Abstracts with Merck’s Collaboration Partners

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Abstract Title</th>
<th>Presentation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYTRUDA (pembrolizumab)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric or gastroesophageal</td>
<td>Pembrolizumab with or without chemotherapy versus chemotherapy for advanced</td>
<td>Abstract #LBA4007</td>
</tr>
<tr>
<td>junction</td>
<td>gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III</td>
<td>(oral)</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE-062 Study</td>
<td>J. Tabernero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunday, June 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:57 a.m.-12:09 p.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT, Arie Crown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theater</td>
</tr>
<tr>
<td>Head and neck</td>
<td>Protocol-specified final analysis of the phase 3 KEYNOTE-048 trial of</td>
<td>Abstract #6000</td>
</tr>
<tr>
<td></td>
<td>pembrolizumab (pembro) as first-line therapy for recurrent/metastatic head</td>
<td>(oral)</td>
</tr>
<tr>
<td></td>
<td>and neck squamous cell carcinoma (R/M HNSCC)</td>
<td>D. Rischin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Friday, May 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2:45-2:57 p.m. CT,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E450</td>
</tr>
<tr>
<td>Liver</td>
<td>Results of KEYNOTE-240: phase 3 study of pembrolizumab (Pembro) vs best</td>
<td>Abstract #4004</td>
</tr>
<tr>
<td></td>
<td>supportive care (BSC) for second line therapy in advanced hepatocellular</td>
<td>(oral)</td>
</tr>
<tr>
<td></td>
<td>carcinoma (HCC)</td>
<td>R. Finn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunday, June 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:57-11:09 a.m. CT,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arie Crown Theater</td>
</tr>
<tr>
<td>Lung</td>
<td>Five-year long-term overall survival for patients with advanced NSCLC treated</td>
<td>Abstract #LBA9015</td>
</tr>
<tr>
<td></td>
<td>with pembrolizumab: Results from KEYNOTE-001</td>
<td>(poster discussion)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. Garon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunday, June 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8:00-11:00 a.m. CT,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hall A (poster)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4:30-6:00 p.m. CT,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hall D1 (discussion)</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE-189: Updated OS and progression after the next line of therapy (PFS2)</td>
<td>Abstract #9013</td>
</tr>
<tr>
<td></td>
<td>with pembrolizumab (pembro) plus chemo with pemetrexed and platinum vs placebo</td>
<td>(poster discussion)</td>
</tr>
<tr>
<td></td>
<td>plus chemo for metastatic nonsquamous NSCLC</td>
<td>S. Gadgeel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunday, June 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8:00-11:00 a.m. CT,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hall A (poster)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4:30-6:00 p.m. CT,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hall D1 (discussion)</td>
</tr>
<tr>
<td>Renal cell</td>
<td>Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line</td>
<td>Abstract #4500</td>
</tr>
<tr>
<td></td>
<td>therapy for metastatic renal cell carcinoma (mRCC): Outcomes in the combined</td>
<td>(oral)</td>
</tr>
<tr>
<td></td>
<td>IMDC intermediate/poor risk and sarcomatoid subgroups of the phase 3</td>
<td>B. Rini</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE-426 study</td>
<td>Monday, June 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8:00-8:12 a.m. CT,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arie Crown Theater</td>
</tr>
</tbody>
</table>

LYNPARZA (olaparib) (in collaboration with AstraZeneca)
Ovarian

<table>
<thead>
<tr>
<th>Olaparib monotherapy versus (vs) chemotherapy for germline BRCA-mutated (gBRCAm) platinum-sensitive relapsed ovarian cancer (PSR OC) patients (pts): Phase III SOLO3 trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract #5506 (oral)</td>
</tr>
<tr>
<td>R. Penson</td>
</tr>
<tr>
<td>Monday, June 3</td>
</tr>
<tr>
<td>3:15-3:27 p.m. CT, S406</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Olaparib maintenance therapy in patients (pts) with a BRCA1 and/or BRCA2 mutation (BRCAm) and newly diagnosed advanced ovarian cancer (OC): SOLO1 China cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract #5554 (poster)</td>
</tr>
<tr>
<td>L. Wu</td>
</tr>
<tr>
<td>Saturday, June 1</td>
</tr>
<tr>
<td>1:15-4:15 p.m. CT, Hall A</td>
</tr>
</tbody>
</table>

Pancreatic

<table>
<thead>
<tr>
<th>Olaparib as maintenance treatment following first-line platinum-based chemotherapy (PBC) in patients (pts) with a germline BRCA mutation and metastatic pancreatic cancer (mPC): Phase III POLO trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract #LBA4 (plenary)</td>
</tr>
<tr>
<td>H. Kindler</td>
</tr>
<tr>
<td>Sunday, June 2</td>
</tr>
<tr>
<td>3:15-3:30 p.m. CT, Hall B1</td>
</tr>
</tbody>
</table>

KEYTRUDA + LENVIMA (lenvatinib) (in collaboration with Eisai)

Endometrial

<table>
<thead>
<tr>
<th>A phase 3 trial evaluating efficacy and safety of lenvatinib in combination with pembrolizumab in patients with advanced endometrial cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract #TPS5607 (poster)</td>
</tr>
<tr>
<td>V. Makker</td>
</tr>
<tr>
<td>Saturday, June 1</td>
</tr>
<tr>
<td>1:15-4:15 p.m. CT, Hall A</td>
</tr>
</tbody>
</table>

Liver

<table>
<thead>
<tr>
<th>Lenvatinib (len) plus pembrolizumab (pembro) for the first-line treatment of patients (pts) with advanced hepatocellular carcinoma (HCC): Phase 3 LEAP-002 study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract #TPS4152 (poster)</td>
</tr>
<tr>
<td>J. Llovet</td>
</tr>
<tr>
<td>Monday, June 3</td>
</tr>
<tr>
<td>8:00-11:00 a.m. CT, Hall A</td>
</tr>
</tbody>
</table>

Lung

<table>
<thead>
<tr>
<th>Randomized, double-blind, phase 3 trial of first-line pembrolizumab + platinum doublet chemotherapy (chemo) ± lenvatinib in patients (pts) with metastatic nonsquamous non-small-cell lung cancer (NSCLC): LEAP-006.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract #TPS9118 (poster)</td>
</tr>
<tr>
<td>R. Hui</td>
</tr>
<tr>
<td>Sunday, June 2</td>
</tr>
<tr>
<td>8:00-11:00 a.m. CT, Hall A</td>
</tr>
</tbody>
</table>

Melanoma

<table>
<thead>
<tr>
<th>Lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with advanced melanoma previously exposed to anti-PD-1/PD-L1 agents: Phase 2 LEAP-004 study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract #TPS9594 (poster)</td>
</tr>
<tr>
<td>A. Arance Fernandez</td>
</tr>
<tr>
<td>Monday, June 3</td>
</tr>
<tr>
<td>1:15-4:15 p.m. CT, Hall A</td>
</tr>
</tbody>
</table>

For more information, including a complete list of abstract titles and presentation dates and times for data from Merck's oncology portfolio, please visit the ASCO website at https://iplanner.asco.org/am2019/#/.

About KEYTRUDA® (pembrolizumab) Injection, 100mg

KEYTRUDA® is an anti-PD-1 therapy that works by increasing the ability of the body's immune system to help detect and fight tumor cells. KEYTRUDA® is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry's largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA® across a wide variety of cancers and treatment settings. The KEYTRUDA® clinical program seeks to understand the role of KEYTRUDA® across cancers and the factors that may predict a patient's likelihood of benefiting from treatment with KEYTRUDA®, including exploring several different biomarkers.

KEYTRUDA® (pembrolizumab) Indications and Dosing

Melanoma

KEYTRUDA® is indicated for the treatment of patients with unresectable or metastatic melanoma. The recommended dose of KEYTRUDA® in patients with unresectable or metastatic melanoma is 200 mg administered as an intravenous infusion over 30 minutes every three weeks until disease progression or unacceptable toxicity.

KEYTRUDA® is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection. The recommended dose of KEYTRUDA® for the adjuvant treatment of adult patients with melanoma is...
200 mg administered as an intravenous infusion over 30 minutes every three weeks until disease recurrence, unacceptable toxicity, or for up to 12 months in patients without disease recurrence.

Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with stage III NSCLC who are not candidates for surgical resection or definitive chemoradiation, or metastatic NSCLC, and whose tumors express PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

In NSCLC, the recommended dose of KEYTRUDA is 200 mg administered as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

When administering KEYTRUDA in combination with chemotherapy, KEYTRUDA should be administered prior to chemotherapy when given on the same day. See also the Prescribing Information for the chemotherapy agents administered in combination with KEYTRUDA, as appropriate.

Head and Neck Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. In HNSCC, KEYTRUDA 200 mg is administered as an intravenous infusion over 30 minutes every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

In pediatric patients with PMBCL, KEYTRUDA is administered as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. In adults with cHL, KEYTRUDA 200 mg is administered as an intravenous infusion over 30 minutes every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

In pediatric patients with cHL, KEYTRUDA is administered as an intravenous infusion over 30 minutes at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for the treatment of patients with PMBCL who require urgent cytoreductive therapy. In adults with PMBCL, KEYTRUDA 200 mg is administered as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

In pediatric patients with PMBCL, KEYTRUDA is administered as an intravenous infusion over 30 minutes at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) ≥10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

In locally advanced or metastatic urothelial carcinoma, KEYTRUDA 200 mg is administered as an intravenous infusion over 30 minutes every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)
- solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
- colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

In adult patients with MSI-H cancer, KEYTRUDA 200 mg is administered as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression. In pediatric patients with MSI-H cancer, KEYTRUDA is administered as an intravenous infusion over 30 minutes at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA is 200 mg as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA is 200 mg as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA in adults is 200 mg administered as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression. The recommended dose of KEYTRUDA in pediatric patients is 2 mg/kg (up to a maximum of 200 mg), administered as an intravenous infusion over 30 minutes every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma. In renal cell carcinoma, KEYTRUDA 200 mg is administered as an intravenous infusion over 30 minutes every 3 weeks in combination with 5 mg axitinib orally twice daily until disease progression, unacceptable toxicity, or for KEYTRUDA, up to 24 months in patients without disease progression. When axitinib is used in combination with KEYTRUDA, dose escalation of axitinib above the initial 5 mg dose may be considered at intervals of six weeks or longer. See also the Prescribing Information for recommended axitinib dosing information.

Selected Important Safety Information for KEYTRUDA (pembrolizumab) Injection, 100mg

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%).

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis, or Hepatotoxicity (in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity (in Combination With Axitinib)

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. Grades 3 and 4 increased ALT and AST were seen in 20% and 13% of patients, respectively. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are used in monotherapy. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in patients with HNSCC, occurring in 15% (28/192) of patients. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency), thyroid function (prior to and periodically during treatment), and hyperglycemia. For hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 and withhold or discontinue for Grade 3 or 4 hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (74/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myocarditis and myelitis were reported in other clinical trials, including CHL and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with chL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonitis, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-008, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with chL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions ≥20% were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract
infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic uterine carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections (except urinary tract infections) (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with HCC were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3–4) and immunemediated hepatitis (2.9%). Laboratory abnormalities (Grades 3–4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3–4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent of which (≥1%) included hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%). The most common adverse reactions (≥1%) resulting in permanent discontinuation of KEYTRUDA, axitinib or the combination were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). When KEYTRUDA was used in combination with axitinib, the most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

Lactation

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use

There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

About LYNPARZA® (olaparib)

LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as *BRCA* mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

LYNPARZA® Indications

LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor or indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic *BRCA*-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients with gBRCAm advanced epithelial ovarian, fallopian tube or primary peritoneal cancer for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer
For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm ovarian cancer

For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm, HER2-negative metastatic breast cancer

In patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Important Safety Information for LYNPARZA® (olaparib)

CONTRAINDICATIONS

There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS

Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females

Advisе females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males

Advisе male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), diarrhea (40%), anemia (38%), constipation (28%), upper respiratory tract infection/influenza/nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), lymphopenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONS—Advanced gBRCAm ovarian cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—gBRCAm, HER2-negative metastatic breast cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

DRUG INTERACTIONS

Anticancer Agents: Clinical studies of LYNPARZA in combination with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid concomitant use of strong or moderate CYP3A inhibitors. If a strong or moderate CYP3A inhibitor must be co-administered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid concomitant use of strong or moderate CYP3A inducers when using LYNPARZA. If a moderate inducer cannot be avoided, there is a potential for decreased efficacy of LYNPARZA.

USE IN SPECIFIC POPULATIONS

Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No adjustment to the starting dose is necessary in patients with mild renal impairment (CLcr=51-80 mL/min) but patients should be monitored closely for toxicity. In patients with moderate renal impairment (CLcr=31-50 mL/min), reduce the dose to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

About LENVIMA® (lenvatinib) capsules 10 mg and 4 mg

LENVIMA® (lenvatinib) is a kinase inhibitor that is indicated in the U.S.:

- For the treatment of patients with locally recurrent or metastatic, progressive radioactive iodine-refractory differentiated thyroid cancer (DTC)
- In combination with everolimus, for the treatment of patients with advanced renal cell carcinoma (RCC) following one prior anti-angiogenic therapy
- For the first-line treatment of patients with unresectable hepatocellular carcinoma (HCC)

LENVIMA, discovered and developed by Eisai, is a kinase inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). LENVIMA inhibits other kinases that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFRI-4; the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. The combination of lenvatinib and everolimus showed increased anti-angiogenic and anti-tumor activity as demonstrated by decreased human endothelial cell proliferation, tube formation, and VEGF signaling in vitro and tumor volume in mouse xenograft models of human renal cell cancer greater than each drug alone. Lenvatinib also exhibited antiproliferative activity in hepatocellular carcinoma cell lines dependent on activated FGFR signaling with a concurrent inhibition of FGF-receptor substrate 2α (FRS2α) phosphorylation.

Important Safety Information for LENVIMA

Warnings and Precautions
Hypertension. In DTC, hypertension occurred in 73% of patients on LENVIMA (44% grade 3-4). In RCC, hypertension occurred in 42% of patients on LENVIMA + everolimus (13% grade 3). Systolic blood pressure ≥160 mmHg occurred in 29% of patients, and 21% had diastolic blood pressure ≥100 mmHg. In HCC, hypertension occurred in 45% of LENVIMA-treated patients (24% grade 3). Grade 4 hypertension was not reported in HCC.

Serious complications of poorly controlled hypertension have been reported. Control blood pressure prior to initiation. Monitor blood pressure after 1 week, then every 2 weeks for the first 2 months, and then at least monthly thereafter during treatment. Withhold and resume at reduced dose when hypertension is controlled or permanently discontinue based on severity.

Cardiac Dysfunction. Serious and fatal cardiac dysfunction can occur with LENVIMA. Across clinical trials in 799 patients with DTC, RCC, and HCC, grade 3 or higher cardiac dysfunction occurred in 3% of LENVIMA-treated patients. Monitor for clinical symptoms or signs of cardiac dysfunction. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Arterial Thromboembolic Events. Among patients receiving LENVIMA or LENVIMA + everolimus, arterial thromboembolic events of any severity occurred in 2% of patients in RCC and HCC and 5% in DTC. Grade 3-5 arterial thromboembolic events ranged from 2% to 3% across all clinical trials.

Permanently discontinue following an arterial thrombotic event. The safety of resuming after an arterial thromboembolic event has not been established and LENVIMA has not been studied in patients who have had an arterial thromboembolic event within the previous 6 months.

Hepatotoxicity. Across clinical studies enrolling 1,327 LENVIMA-treated patients with malignancies other than HCC, serious hepatic adverse reactions occurred in 1.4% of patients. Fatal events, including hepatic failure, acute hepaticitis, and hepatorenal syndrome, occurred in 0.5% of patients. In HCC, hepatic encephalopathy occurred in 8% of LENVIMA-treated patients (5% grade 3-5). Grade 3-5 hepatic failure occurred in 3% of LENVIMA-treated patients. 2% of patients discontinued LENVIMA due to hepatic encephalopathy and 1% discontinued due to hepatic failure.

Monitor liver function prior to initiation, then every 2 weeks for the first 2 months, and at least monthly thereafter during treatment. Monitor patients with HCC closely for signs of hepatic failure, including hepatic encephalopathy. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Renal Failure or Impairment. Serious including fatal renal failure or impairment can occur with LENVIMA. Renal impairment was reported in 14% and 7% of LENVIMA-treated patients in DTC and HCC, respectively. Grade 3-5 renal failure or impairment occurred in 3% of patients with DTC and 2% of patients with HCC, including 1 fatal event in each study. In RCC, renal impairment or renal failure was reported in 18% of LENVIMA + everolimus–treated patients (10% grade 3).

Initiate prompt management of diarrhea or dehydration/hypovolemia. Withhold and resume at reduced dose upon recovery or permanently discontinue for renal failure or impairment based on severity.

Proteinuria. In DTC and HCC, proteinuria was reported in 34% and 26% of LENVIMA-treated patients, respectively. Grade 3 proteinuria occurred in 11% and 6% in DTC and HCC, respectively. In RCC, proteinuria occurred in 31% of patients receiving LENVIMA + everolimus (8% grade 3).

Monitor for proteinuria prior to initiation and periodically during treatment. If urine dipstick proteinuria ≥2+ is detected, obtain a 24-hour urine protein. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Diabetes. Of the 737 LENVIMA-treated patients in DTC and HCC, diabetes occurred in 49% (6% grade 3). In RCC, diabetes occurred in 81% of LENVIMA + everolimus–treated patients (19% grade 3). Diabetes was the most frequent cause of dose interruption/reduction, and diabetes recurred despite dose reduction.

Promptly initiate management of diabetes. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Fistula Formation and Gastrointestinal Perforation. Of the 799 patients treated with LENVIMA or LENVIMA + everolimus in DTC, RCC, and HCC, fistula or gastrointestinal perforation occurred in 2%. Fistulas and gastrointestinal perforations have also been reported in other lenvatinib clinical trials and in post-marketing experience. Pneumothorax has been reported with and without clear evidence of a bronchopleural fistula. Some reports of gastrointestinal perforation, fistula, and pneumothorax occurred in association with tumor regression or necrosis. In most cases of fistula formation or gastrointestinal perforation, risk factors such as prior surgery or radiotherapy were present.

Permanently discontinue in patients who develop gastrointestinal perforation of any severity or grade 3-4 fistula.

QT Interval Prolongation. In DTC, QT/QTc interval prolongation occurred in 9% of LENVIMA-treated patients and QT interval prolongation of >500 ms occurred in 2%. In RCC, QTc interval increases of >60 ms occurred in 11% of patients receiving LENVIMA + everolimus and QTc interval >500 ms occurred in 6%. In HCC, QTc interval increases of >60 ms occurred in 8% of LENVIMA-treated patients and QTc interval >500 ms occurred in 2%.

Monitor and correct electrolyte abnormalities at baseline and periodically during treatment. Monitor electrocardiograms in patients with congenital long QT syndrome, congestive heart failure, bradyarrhythmias, or those who are taking drugs known to prolong the QT interval, including Class Ia and III antiarrhythmics. Withhold and resume at reduced dose upon recovery based on severity.

Hypocalcemia. In DTC, grade 3-4 hypocalcemia occurred in 9% of LENVIMA-treated patients. In 65% of cases, hypocalcemia improved or resolved following calcium supplementation with or without dose interruption or dose reduction. In RCC, grade 3-4 hypocalcemia occurred in 6% of LENVIMA + everolimus–treated patients. In HCC, grade 3 hypocalcemia occurred in 0.8% of LENVIMA-treated patients.
Monitor blood calcium levels at least monthly and replace calcium as necessary during treatment. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity.

Reversible Posterior Leukoencephalopathy Syndrome. Across clinical studies of 1,823 patients who received LENVIMA as a single agent, RPLS occurred in 0.3%. Confirm diagnosis of RPLS with MRI. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity and persistence of neurologic symptoms.

Hemorrhagic Events. Serious including fatal hemorrhagic events can occur with LENVIMA. In DTC, RCC, and HCC clinical trials, hemorrhagic events, of any grade, occurred in 29% of the 799 patients treated with LENVIMA as a single agent or in combination with everolimus. The most frequently reported hemorrhagic events (all grades and occurring in at least 5% of patients) were epistaxis and hematuria. In DTC, grade 3-5 hemorrhage occurred in 2% of LENVIMA-treated patients, including 1 fatal intracranial hemorrhage among 16 patients who received LENVIMA and had CNS metastases at baseline. In RCC, grade 3-5 hemorrhage occurred in 8% of LENVIMA + everolimus-treated patients, including 1 fatal cerebral hemorrhage. In HCC, grade 3-5 hemorrhage occurred in 5% of LENVIMA-treated patients, including 7 fatal hemorrhagic events.

Serious tumor-related bleeds, including fatal hemorrhagic events, occurred in LENVIMA-treated patients in clinical trials and in the postmarketing setting. In postmarketing surveillance, serious and fatal carotid artery hemorrhages were seen more frequently in patients with anaplastic thyroid carcinoma (ATC) than other tumors. Safety and effectiveness of LENVIMA in patients with ATC have not been demonstrated in clinical trials.

Consider the risk of severe or fatal hemorrhage associated with tumor invasion or infiltration of major blood vessels (e.g., carotid artery). Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Impairment of Thyroid Stimulating Hormone Suppression/Thyroid Dysfunction. LENVIMA impairs exogenous thyroid suppression. In DTC, 88% of patients had baseline thyroid stimulating hormone (TSH) level ≤0.5 mU/L. In patients with normal TSH at baseline, elevation of TSH level >0.5 mU/L was observed post baseline in 57% of LENVIMA-treated patients. In RCC and HCC, grade 1 or 2 hypothyroidism occurred in 24% of LENVIMA + everolimus–treated patients and 21% of LENVIMA–treated patients, respectively. In patients with normal or low TSH at baseline, elevation of TSH was observed post baseline in 70% of LENVIMA-treated patients in HCC and 60% of LENVIMA + everolimus–treated patients in RCC.

Monitor thyroid function prior to initiation and at least monthly during treatment. Treat hypothyroidism according to standard medical practice.

Wound Healing Complications. Wound healing complications, including fistula formation and wound dehiscence, can occur with LENVIMA. Withhold for at least 6 days prior to scheduled surgery. Resume after surgery based on clinical judgment of adequate wound healing. Permanently discontinue in patients with wound healing complications.

Embryo-fetal Toxicity. Based on its mechanism of action and data from animal reproduction studies, LENVIMA can cause fetal harm when administered to pregnant women. In animal reproduction studies, oral administration of lenvatinib during organogenesis at doses below the recommended clinical doses resulted in embryotoxicity, fetotoxicity, and teratogenicity in rats and rabbits. Advise pregnant women of the potential risk to a fetus; and advise females of reproductive potential to use effective contraception during treatment with LENVIMA and for at least 30 days after the last dose.

Adverse Reactions

In DTC, the most common adverse reactions (≥30%) observed in LENVIMA-treated patients were hypertension (73%), fatigue (67%), diarrhea (67%), arthralgia/myalgia (62%), decreased appetite (54%), decreased weight (51%), nausea (47%), stomatitis (41%), headache (38%), vomiting (36%), proteinuria (34%), palmar-plantar erythrodysesthesia syndrome (32%), abdominal pain (31%), and dysphonia (31%). The most common serious adverse reactions (≥2%) were pneumonia (4%), hypertension (3%), and dehydration (3%). Adverse reactions led to dose reductions in 68% of LENVIMA-treated patients; 18% discontinued LENVIMA. The most common adverse reactions (≥10%) resulting in dose reductions were hypertension (13%), proteinuria (11%), decreased appetite (10%), and diarrhea (10%); the most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were hypertension (1%) and asthenia (1%).

In RCC, the most common adverse reactions (≥30%) observed in LENVIMA + everolimus–treated patients were diarrhea (81%), fatigue (73%), arthralgia/myalgia (55%), decreased appetite (53%), vomiting (48%), nausea (45%), stomatitis (44%), hypertension (42%), peripheral edema (42%), cough (37%), abdominal pain (37%), dyspnea (35%), rash (35%), decreased weight (34%), hemorrhagic events (32%), and proteinuria (31%). The most common serious adverse reactions (≥5%) were renal failure (11%), dehydration (10%), anemia (6%), thrombocytopenia (5%), diarrhea (5%), vomiting (5%), and dyspnea (5%). Adverse reactions led to dose reductions or interruption in 89% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were diarrhea (21%), fatigue (16%), thrombocytopenia (6%), vomiting (6%), nausea (5%), and proteinuria (5%). Treatment discontinuation due to an adverse reaction occurred in 29% of patients.

In HCC, the most common adverse reactions (≥20%) observed in LENVIMA-treated patients were hypertension (45%), fatigue (44%), diarrhea (39%), decreased appetite (34%), arthralgia/myalgia (31%), decreased weight (31%), abdominal pain (30%), palmar-plantar erythrodysesthesia syndrome (27%), proteinuria (26%), dysphonia (24%), hemorrhagic events (23%), hypothyroidism (21%), and nausea (20%). The most common serious adverse reactions (≥2%) were hepatic encephalopathy (5%), hepatic failure (3%), ascites (3%), and decreased appetite (2%). Adverse reactions led to dose reductions or interruption in 62% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were fatigue (9%), decreased appetite (8%), diarrhea (8%), proteinuria (7%), hypertension (6%), and palmar-plantar erythrodysesthesia syndrome (5%). Treatment discontinuation due to an adverse reaction occurred in 20% of patients. The most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were fatigue (1%), hepatic encephalopathy (2%), hyperbilirubinemia (1%), and hepatic failure (1%).

Use in Specific Populations

Because of the potential for serious adverse reactions in breastfed infants, advise women to discontinue breastfeeding during treatment and for at least 1 week after last dose. LENVIMA may impair fertility in males and females of reproductive potential.
No dose adjustment is recommended for patients with mild (CLcr 60-89 mL/min) or moderate (CLcr 30-59 mL/min) renal impairment. LENVIMA concentrations may increase in patients with DTC or RCC and severe (CLcr 15-29 mL/min) renal impairment. Reduce the dose for patients with RCC or DTC and severe renal impairment. There is no recommended dose for patients with HCC and severe renal impairment. LENVIMA has not been studied in patients with end stage renal disease.

No dose adjustment is recommended for patients with HCC and mild hepatic impairment (Child-Pugh A). There is no recommended dose for patients with HCC with moderate (Child-Pugh B) or severe (Child-Pugh C) hepatic impairment.

No dose adjustment is recommended for patients with DTC or RCC and mild or moderate hepatic impairment. LENVIMA concentrations may increase in patients with DTC or RCC and severe hepatic impairment. Reduce the dose for patients with DTC or RCC and severe hepatic impairment.

About the AstraZeneca and Merck Strategic Oncology Collaboration

In July 2017, AstraZeneca and Merck, known as MSD outside the United States and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize LYnpARZA, the world’s first PARP inhibitor, and potential new medicine selumetinib, a MEK inhibitor, for multiple cancer types. Working together, the companies will develop LYnpARZA and selumetinib in combination with other potential new medicines and as monotherapies. Independently, the companies will develop LYnpARZA and selumetinib in combination with their respective PD-L1 and PD-1 medicines.

About the Eisai and Merck Strategic Collaboration

In March 2018, Eisai and Merck, known as MSD outside the United States and Canada, through an affiliate, entered into a strategic collaboration for the worldwide co-development and co-commercialization of LENVIMA. Under the agreement, the companies will jointly develop, manufacture and commercialize LENVIMA, both as monotherapy and in combination with Merck’s anti-PD-1 therapy KEYTRUDA.

In addition to ongoing clinical studies evaluating the LENVIMA and KEYTRUDA combination across several different tumor types, including renal cell carcinoma, the companies will jointly initiate new clinical studies through the LEAP (LEnvatinib And PembroZumbum) clinical program, which will evaluate the combination to support 11 potential indications in six types of cancer (endometrial cancer, hepatocellular carcinoma, melanoma, non-small cell lung cancer, squamous cell carcinoma of the head and neck, and urothelial cancer). The LEAP clinical program also includes a new basket trial targeting six additional cancer types (biliary tract cancer, breast cancer, colorectal cancer, gastric cancer, glioblastoma and ovarian cancer). The LENVIMA and KEYTRUDA combination is not approved in any cancer types today.

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

About Merck

For more than a century, Merck, a leading global biopharmaceutical company known as MSD outside of the United States and Canada, has been inventing for life, bringing forward medicines and vaccines for many of the world’s most challenging diseases. Through our prescription medicines, vaccines, biologic therapies and animal health products, we work with customers and operate in more than 140 countries to deliver innovative health solutions. We also demonstrate our commitment to increasing access to health care through far-reaching policies, programs and partnerships. Today, Merck continues to be at the forefront of research to advance the prevention and treatment of diseases that threaten people and communities around the world - including cancer, cardio-metabolic diseases, emerging animal diseases, Alzheimer's disease and infectious diseases including HIV and Ebola. For more information, visit www.merck.com and connect with us on Twitter, Facebook, Instagram, YouTube and LinkedIn.

Forward-Looking Statement of Merck & Co., Inc., Kenilworth, N.J., USA

This news release of Merck & Co., Inc., Kenilworth, N.J., USA (the “company”) includes “forward-looking statements” within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company's management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company's ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company's patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company's 2018 Annual Report on Form 10-K and the company’s other
filings with the Securities and Exchange Commission (SEC) available at the SEC’s Internet site (www.sec.gov).

Please see Prescribing Information for LENVIMA (lenvatinib) at http://www.lenvima.com/pdfs/prescribing-information.pdf.

LENVIMA® is a registered trademark used by Eisai Inc. under license from Eisai R&D Management Co., Ltd.

Language:
English

Contact:
Media Contacts:
Pamela Eisele
(267) 305-3558

Kristen Drake
(908) 740-1679

Investor Contacts:
Teri Loxam
(908) 740-1986

Michael DeCarbo
(908) 740-1807

Ticker Slug:
Ticker: MRK
Exchange: NYSE
@Merck